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TRACE FORMULAS FOR A CLASS 
OF TOEPLITZ-LIKE OPERATORS 

BY 

H A R R Y  D Y M  

ABSTRACT 

Let Pr denote projection onto the space of entire functions of exponential type 
< T which are square summable on the line relative to a measure dA and let G 
denote multiplication by a suitably restricted complex valued function g. For a 
reasonably large class of measures dA, which includes Lebesgue measure dy, it 
is shown that trace {(PrGPT)" - PrG"Pr} tends boundedly to a limit as T T 0o 
and that the limit is independent of the choice of dA within the permitted class. 
This extends the range of validity of a formula due to Mark Kac who evaluated 
this limit in the special case dA = dy using a different formalism. 

I. Introduction 

In this p a p e r  we shall  s tudy the  l imit  as T I' oo of the  t race  of a class of 

Toep l i t z - l i ke  o p e r a t o r s  of  the  fo rm (PrGPr)" in which G s tands  for  the  o p e r a t o r  

of mul t ip l i ca t ion ,  by  a su i tab ly  res t r i c t ed  comple::x va lued  funct ion  g, and  P r  is 

the  o r t h o g o n a l  p ro j ec t i on  of  L2(R~,dA) on to  the  space  l r ( d A )  of en t i re  

func t ions  of  e x p o n e n t i a l  type  _-< T which are  square  s u m m a b l e  re la t ive  to  the  

m e a s u r e  d A ( y ) =  [ h ( y ) r d y .  W e  shall  a s sume  t h r o u g h o u t  that  

f [ i~ l dy < + l 

and  shall always take h itself to be an outer [unction. This  is a c c ompl i she d  by 

def ining 

h(a) = l im h( to)  
b~,0 

in which to = a + ib and  

{ 1 f 1 +  y t o l o g [ h ( y ) l  dy}. 
(1.1) h ( t o ) = e x p  - ~  y - t o  y 2 + l  

Received March 28, 1976 and in revised form December 2, 1976 

21 



22 H A R R Y  DYM Israel J. Math. 

The indicated limit exists pointwise a.e.; see e.g. page 51 of Dym-McKean [9] for 

a proof. In additon we shall assume for themoment  that 

(1.2) there exists a choice of R >-_ 0 such that hR (y) = e"Rh (y) agrees 

a.e. on the real axis with the reciprocal of an entire function of 
exponential type <= R, 

although much of the analysis will be carried out under the less restrictive 

assumption that 

(1.3) there exists a choice of R >->_ 0 such that hR/h ~ agrees a.e. on the 
real axis with an inner function. 

AMPLIFICATION. If (1.2) is in force and if the exponential type of 1/hR is _--< R, 

then in fact equality must prevail since - b - ' l o g [ h R ( i b ) l ~ R  as b 1' ~. This 

follows easily from the formulas displayed in the proof of Lemma 2.1. 

NOTATION. The limits of integration in the above integrals and all other such 

unmarked integrals are moo; to* stands for the complex conjugate of the 

complex number to, whereas G* will stand for the adjoint of the operator G; 

h~'(to) = [h(to*)]*, hr(to)= e'~rh(to) and h~(to)= e-"~rh*(to). 

The space l r (dA)  is a proper closed subspace of L2(R 1, dA) for every choice 

of T-> 0 because of the summability condition imposed on log lh I. Moreover, 

because of (1.2), the phase y T +  O(y) of 

hr('y) = t h (V)l eq~r+~")~ 

has non-negative slope T +  0'(3') on R ~ for T =  > R (see Corollary 2.2). A 

principal conclusion of this paper can now be expressed conveniently in terms of 

O' as follows: 

If  (1.2) is in effect, and 

f ]g('y)l[T + O'(~/)]d'/<oo 

for every choice of T >= R, if g is bounded and uniformly continuous and if the 
inverse Fourier transform 

1 f 
gV(x) = ~ J g ( 3, )e-"~ dy 

is subject to the constraint 

f lxllgV(x)12dx <oo, 
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then ( P~GPT )" and PTG"PT are of trace class for every T >- 0 and every positive 
integer n and 

trace{(PTGPT)" - PTG"PT} = trace(PTGPT)" - 1__ f [g(y)] ,  IT + O' (y)]dy 
71" 3 

(1.4) 

.-, fo | /g,~\v { g . - k ] V ( _ x ) d x + o ( 1 )  xt,<) (x),._,< j 

as T ~ oo. Moreover, for suitably small e, the determinant 

detlI-ePrGPr]-=exp {-trace .:,~' [ePrGnPr]" } 
(1.5) f l  f 

e x p / ~  J l o g [ l -  eg (y ) ] [T  + O'(y)]dy 

+ f0= x(log[1 - eg])V(x)(log[1 - eg])V( - x)dx + o(1)} 

as T too. 

Formulas (1.4) and (1.5) were first established in a different formalism in the 

special case h = 1 by Mark Kac [15]. Kac took g to be real valued and even and 

assumed that f ixi[gV(x)ldx < oo. These restrictions on g were subsequently 

relaxed by Baxter [3], Hirschman [1i], [12], [13], and Devinatz [6], [7]; see also 

Akhiezer [1] for a different approach, Kac [16] for comments thereon and 

Hirschman [14] for a survey and an extensive bibliography. To compare the 

present results with those of Kac you have only to notice that if h = 1, then 

O ' =  0 and 

trace( PTGPT )" 
(1.6) 

=f_; ...f_; g V ( X l - - X 2 ) ' ' ' g V ( X n - - l - - X n ) g V ( x n - - g l ) d X l ' ' ' d x n  �9 

Identity (1.6) follows from the classical Paley-Wiener  theorem which enables 

you to express PTf explicitly in terms of f~ in case h = 1: 

r(x)e' x - -  sin T ( r  ~/) 
~ ( r  7) f(~l)dT1 

for f ~ L2(R 1, dy). Consequently you see that 

(PTGPTf)(~) = f~_~ K(~, ~)f(Ti)d~ I 
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in which the kernel 

f sin T(~: - 7) sin T(), - 7/) 

and identity (1.6) is now easily deduced from the fact that 

trace(PTGPr)" = f:_| . . .  f K(~1,~:)... K(~,_I,~,)K(~,,~Od~1... d~,. 

The strategy of this paper is to show that 

~m {trace(PrGPr) ~ _ 1  f [g(y)]"[T+ ag'(~/)]dy 1 

exists and is independent of the choice of h, within the class of h under 

consideration. This permits you to evaluate the limit by choosing h = 1 and 

invoking (the refined version of) Kac's formula. These results are based in part 

upon a preliminary study of the orthogonal projection Ur of L 2(R 1, dA) onto* 

MT (d A ) = L 2(R ', dA) O ((h ~.)-1/./2+ + (hT)-,/./2-) = (h ~)-'lt 2- f3 (hr)-'H 2+ 

under the less restrictive assumption (1.3), in place of (1.2). In particular it is 

shown that, for suitably restricted g, 

( U GUT )" - UTG"U  

is of trace class for every positive integer n => 1 and that 

--, f :  /s lim trace{(UTGUT)" - UrG"Ur}= - n ~ Jo x t k } (x) \n - k / x )dx 
T ' f  ~ k ~ l  

independently of the choice of h. The extra assumption (1.2) then permits you to 
identify PT and Ur for T_-> 0, and to make the evaluation 

trace UrG"U~ = trace PTG"PT = lrr f [g(3')]" [T + ~9'(7)]d3' 

in terms of the phase 0 of h for T > R. 

The cognoscenti will perhaps recognize that, in the presence of (1.2), 

1 [T+  O'(~/)] = JT(v)I h(v)l  ~ 
71" 

for T => R, in which 

* H2+[H :-] denotes  the Hardy space of class 2 over the upper  (lower) half-plane. 
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j~(~)  = e(T,/3)* e (T,_ 2 ~'i (77)  - e(T,_ [3 ~,)*)e'(T, 3') 

is the reproducing kernel for the de Branges space B(e) alias l r (dA)  based upon 

the function 

e(T, 3') = [hr(3')]-'. 

This suggests that formulas akin to (1.4) and (1.5) should hold for the traces of 

the operators (PrGPr) n in case that Pr is the projection onto a suitably indexed 

family of de Branges subspaces B(e(T, 7)) of L2(R 1, dA) for an even wider class 

of measures dA than those considered above. Indeed the main theorems of 

Section 5 are stated in the language of j r(3 ' )  assuming only that (1.3) is in effect 

and that I h I -z is locally summable. This is much less restrictive than (1.2), but still 

deals with a case in which the fundamental de Branges spaces of interest are the 

spaces lr(dA).  The generalizations of the refined Szeg6 limit theorem on the 

circle to non-trigonometric polynomials by Davis and Hirschma,n [4] and by 

Askey and Wainger [2] can also be put into the de Branges space formalism by 

making T run through the positive integers and defining B(e(T, y)) as a suitably 
normed de Branges space of polynomials of degree < T. 

2. Prerequisites 

In this section a number of the implications of the assumptions on h are 

prepared for future use. The first two chapters of Dym-McKean [9] are 

suggested for supplementary information on the requisite function theory and 

the Hardy spaces H2+[H 2-] over the upper [lower] half-plane. 

The first item of business is to show that (1.2) implies (1.3). 

LEMMA 2.1. If hR agrees a.e. on the line with the reciprocal of an entire 
function of exponential type <- R, then h~/h "~ agrees a.e. on the line with an inner 

function. 

PROOF. The Nevanlinna formula (see e.g. pages 22-25 of Dym-McKean [9]) 

applied to (h~)-' yields the bound 

b r loglh~(3,)l - log l h ~(a ~- ib) l ~ Rb - - ~  J ( y - a ) 2 + b  2dy 

= Rb b f loglh(3,)l - -~ ( y _ a )2 + b 2 dY 

for b > 0. At the same time you have 
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log lhR(a + ib)l = - Rb + b f log{h(3,)[ 
~" (y_a)2+ b 2 dy 

for b > 0 since h is presumed to be an outer function; see (1.1). It follows at once 
that 

j = hR/h'~ 

is both analytic in the open upper half-plane and subject to the bound 

log I/(a + ib)l <=0 

for b _-> 0, with equality for b = 0. Therefore j is an inner function and the proof 
is complete. 

The next item of business is to examine the relationship between the spaces 
l r ( d h )  and MT(dA). 

LEMMA 2.2. l r (dh)  C Mr( d h )  for every T>=O. 

PROOF. Let f E  l r (dh ) .  Then 

f f log* If(~,)h(7), f log" I1/h(•)l log + I/(T)I dr =< 3,2 aT + dr 
3,2+ 1 + 1 ~/2+ 1 

< o o  

and so the Nevanlinna representation formula may be applied to fr(y) = ei 'rf(y) 
to deduce the bound 

log Ifr(a + ib)l < b f 
log If(r)l 

=-# (y _ a)2 + b2 d'r 

for b-> 0. At the same time 

+ ib)l = b f loglh(v)l loglh(a "~ (,y _ a )2 + b 2 d'Y 

for b > 0, since h is an outer function, and so 

I(frh ) (a+ib  )12<= exp {b  f log I ( t ' h (v  - 0) 2+) (Y) 12b2 d ) '  1 

for b > 0, whence fhr = frh is seen to belong to H2§ 

f I(fhr)(a + ib)rda <= f I(fh)(a)12dT 

--Ilfll~ 
independently of b > 0. It follows readily that f is orthogonal to (hr)- 'H 2- in 
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L2(R1, dA) as is f*, by the same argument. Therefore f is orthogonal to 

(h~)-'H~ also and so must belong to M r (dA ) .  The proof is complete. 

AMPLIFICATION. It has already been noted that l r (dA)  is a proper closed 

subspace of L 2 ( R ' , d A )  for every T=>0. A proof may be patterned on the 

argument given on p. 316 of Dym-McKean [8]; see also page 151 of Pitt [17]. 

The estimates derived in the verification of Lemma 2.2 come into play in the 

former. 

THEOREM 2.1. I f  [ h 1-2 is locally summable, tl~en M r ( d A ) = l r (dA)  for every 

T>-O. 

PROOF. Fix T = 0 and choose f ~ MT(dA). In view of Lemma 2.2 you have 

only to show that f can be identified with the restriction to R 1 of an entire 

T ~ ~'/ you may function of exponential type =< T. Since fhr  E H 2* and fh*  2- 

presume from the outset that f is defined and analytic in both the open upper 

half-plane and the open lower half-plane and that 

f (a )  = lim f (a  + ib) = lim f (a  - ib) a.e. 
bJ, O b~,o 

Moreover, f is locally summable: 

I f (a ) lda  <= I(fh )(a)12da Ih(a)l-Zda <oo 
c 

f o r O < c < o o ,  and 

f f 'Wl )(a)12 f log*lh(a)1-2 2 l~ da <= a 2 da + a 2 da 
a 2 + l  +1 +1 

<f IO )(a)l f l l ~  = a 2 + l  d a + 2  a 2 + l  

< o o .  

The proof that f may be identified with an entire function of exponential type 

T is now completed by an argument due to Levinson-McKean; see pages 

115-116 of Dym-McKean [9] for the details. The type estimate involves a minor 

modification of the arguments given there and so the main ideas will be 

sketched. The first step is to extract the bound 

log If(Re'~ =< TR I sin 0 l+  R ]sin 01 f log+If(y)] 
I - Re" l 

R ]sin01 ( log+lf(y)l 
<=TRIs inOl+Tr[1-cosO]  J y2+RZ dy, 
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for 0<101<Tr,  from the fact that f h r E H  2*, / h ~ - E H  2- and h is an outer 

function. This implies that f is of exponential type = T in the two sectors 

~-/9_-<10l_--<8rr/9 and that f (y )e  - ' r  [ f ( y ) e " ]  is bounded on the rays y = 

Re'~ 0 = ___ rr/9 [0 = -+87r/9]. But now f is of order _---4, as is shown in the 

reference cited above, and 2rr/9 < r and so the Phragm6n-Lindel6f principle 

implies that f (y)e  - 'r [f(y)e "r] is bounded in the sector 10[=<zr/9 

[I rr - 01 =< 7r/9]. Thus f is seen to be of exponential type =< T in the whole 

complex plane, and the proof is complete. 

NOTATION. (,)a Ill II ] stands for the inner product [norm] in L2(R', dA). 

THEORZM 2.2. If lT (dA) # O, then it is a reproducing kernel Hilbert space with 
reproducing kernel 

(2.1) j r ( y )  = e(T, w)*e(T, y ) -  e"(T, w)*e"(T, y) 
- 2"rri (y - r 

based upon the (de Branges) function 

P~(l[hr) 
(2.2) e = e ( T ,  . ) = i l p ~ ( 1 / h ~ ) L o .  

in which dA~ [rr(y2+ 1)J-IdA(y) and P~ is the orthogonal projection of 
L2(R 1, dA 0) onto lr(dA~ 

There are two things to show: that JS ~ l r (dA)  for every complex o~ 

(2.3) f(oJ) = (L J~)a 

for every complex oJ. and every f E l r (dA) .  The first is self-evident once you 

know that e is well defined. But if l r ( d A ) ~  O, then there exists a function 

f ~ l r (dA~ with f(i)  ~ 0 and so the Cauchy formula for H 2+ functions, applied 

to ( 1 -  iy)-lfhr, implies that 

1 f f (y )hr(y)  dy = f(i)hr(i) ~ O. (f, 1/hr)ao = -~ 2/2 + 1 

Hence IlP~(1/h~)[[ao~ 0 and e is well defined. Since e itself belongs to l r (dA~ 

you see that 

e(T, i)hT(i) 
1 = (e, e)~o = [[P~(1/hT)[[~o" 

This proves that e(T, i ) > 0 ,  since h r ( i ) > 0 ,  and yields the identities 

PROOF. 

and that 
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f(i) 
(f, e)ao = e(T, i) 

and 

{f, e"h~ e)~~ = [ ~ ] *  = f ( - i )  
I.e(T,i)J e(T,i) 

for f E l~(dA~ and the subsequent evaluation 

IIjTII ~ = f l e(T, i)*e(T, 7 ) - e " ( T ,  i)*e"(T, 7)12dA(3') 
~ ( 3 '  - i )  

=le(T, i )[~-[e(T,- i )[  2 
4"n" 

= JT(i) > o. 

The last inequality follows from the fact that 

[ e ( T , - i ) [  
e(T, i) = l(e", eLol =< Ile"ll~olle I1~ o = 1 

with equality if and only if 

e ~'= ce 

with a constant c of modulus 1. But that in turn would imply that 

f(i) -- c f ( -  i) 

for every [ E l r (dA~ which is clearly not the case if l r ( d A ) ~  0. 

Now if f and g belong to l r ( d A )  and w is fixed, then 

belongs to l r (dA~ and is orthogonal to both e and e "~ in L2(R 1, dAO). Therefore 

e(T, ~,) f f(3")gOo) - f(a,)g(3") e(T, 3')* da(3 ' )  
27ri(3' - w) 

- e"(T, o.,)f [(3")g(w)-1:(~o)g(3") e'~(T, 3')* da(r) = 0, 
2rri(3' - w) 

or, what amounts to the same, 

g(o,)</, i S ,  = f ( o , ) ( g ,  I 9 , .  

The choice g = J r  yields the identity 
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Js(to)( / ,  = f ( to) l l ]S  I1 . 

Now suppose that f ( i )  • O. Then since Jr,(i) > O, you may choose a small disc 
about the point i such that 

f(to) Jr(to) 

is both analytic and real valued (in fact positive) for all points to in that disc. 

Therefore, by the open mapping theorem, there is a constant c such that 

f(to) = c(f, J~a 

for all points to in that disc, and hence for all points to in the complex plane since 

both sides of the equality are entire functions. The choice f = JT and to = i 

implies that c = 1, and so (2.3) is established for those f ~ l r (dA)  with f ( i ) ~  O. 
But now if f( i)  = 0 you may take g E l r (dA)  with g(i) ~ 0 and apply (2.3) to 

f + g and to g separately. Hence, by linearity (2.3) is valid for all f ~ lr(dA),  and 
the proof is complete. 

AMPLIFICATION. l r ( d A )  may be identified as the de Branges space B(e) 

based upon the de Branges function e. See Dym-McKean [9] for an introduction 

to such spaces and de Branges [5] for a more comprehensive treatment. The 

identification (2.2) of e in terms of a projection is adapted from page 315 of 

If  qbk, k = 1, 2 , . . . ,  is an orthonormal basis for l r ( d A ), then 

(2.4) ~ I(~k(to)l 2= J~(to) 
k = l  

for every complex number to. 

PROOF. A double application of (2.3) with [ = JS coupled with the Plan- 

cherel formula yields the result: 

T so (to) = (sL  

k = l  

= 2 
k = l  

COROLLARY 2.2. I f  ha agrees a.e. on the line with the reciprocal of an entire 
function of exponential type <-_ R, then Mr(dA )  = I r (dA)  for T >- 0, 

Dym-McKean [8]. 

COROLLARY 2.1. 
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(2.5) 

for T >- R, and 

e ( ~  7) = [hT(3')] -1, 

(2.6) J~(3') = I h (7)1-2 [T  + 0'(3')], 
~T 

for T >= R and 3" E R 1, in which 0 denotes the phase of h. 

PROOF. The first two assertions are an immediate consequence of Theorems 

2.1 and 2.2. Formula (2.6) then follows upon substituting (2.5) into (2.1) and 

evaluating the resulting expression with to = 3' real. 

3. Preliminary estimates 

In this section a number of preliminary estimates related to the growth of the 

trace of (UTGUT)" as T 1' oo will be derived. Gohberg-Krein [10] is recom- 

mended as a general source of information on trace class (alias nuclear) and 

Hilbert-Schmidt operators. 

NOTATION. IIA II, IA I1 and IA 12 stand for the usual operator norm, the trace 

class norm (i.e., the sum of the s-numbers) and the Hilbert-Schmidt norm of the 

operator A, respectively. 

LEMMA 3.1. If  f E  MT(dA), then 

ffh)V(x)= 0 

and 

PROOF. 

and 

for x <  - T 

(Jh*)V(x) = 0 for x > T. 

If f E  MT(dA), then fhT E H z+ and f h ~  H 2-. Therefore 

(fhT)V(x)=0 for x < 0  

The rest is plain. 

0 ' hT) (X)=0  for x > 0 .  

Let p[q] denote the orthogonal projection of L2(R',d3,) onto H 2+ [//2-]: 

p: f E L2(R 1, aT)---* ( | f f  (x)e"*dx, 
jo 

f' q : f E L 2 ( R l ,  d3,)---~ fV(x)e"Xdx 
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and let V = VT[W = WT] denote the orthogonal projection of L2(R 1, dA) onto 

(h~-)-IH 2+ [hr'H2-]. Then it is readily checked that 

VTf = (h ~)-'ph ~-f 

and 

WTf = (hr)-'q hrf, 

and hence that 

also. The rest is plain. 

and 

V W =  V ' W *  = ( W V ) *  = 0  

LEMMA 3.3. I f  f E L2(R ' ,  dA), then 

VTf[I~ : 2~r l | I(fh *)V(x)12dx = II o(1) ,  
J T  

l[ WTfl[~ = 2~r f~ 5 [(fh y(x)l~dx = o(1) ,  

as T ~ ,  

as T ~ oo. 

I f  also (1.3) is in effect and T >= R, then 

}1Uff-f}l~ = 11VTf + wTfl[X = II VTf}[~ + 11 w~fl]~ = o(I). 

for f ~ L2(R ', dA). 

WARNINO. The dependence of the projections PT, UT, VT and WT upon T is 

often suppressed in order to simplify the typography. 

LEMMA 3.2. I f  (1.3) is in effect and T > R, then VTWT = WTVT = 0 and 

uT = I - ( V T  + wT). 

PROOF. By assumption hr/h'~ is an inner function for T = R and so too for 

T -  > R. Therefore, since H 2+ is both closed under multiplication by inner 

functions and orthogonal to H 2-, you see that 

WTVTf = (hT) 'q (hT/h~)ph~f  

= 0  

for T => R and f E L2(R 1, dh).  This proves that 

W V  = Wr V~ = 0 
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PROOF. 

y_ ' I ( ~  )1 = 2r T)~(X 2dx 

= 2 ~  I(/h)~(x)t~dx 

By the classical Plancherel formula 

(lh~y (x)e"~dx d~, 

33 

which clearly tends to zero as T 1' ~ since Oh) v E L2(R 1, dx). The evaluation of 

U Vflla is similar and the final statement drops out from the fact that V and W are 

mutually orthogonal projections for T => R. 

LEMMA 3.4. If g is a bounded function of class L2(R1, d~,), then the 
Hilbert-Schmidt norms o[ VrGUT and WrGUr are subject to the bound~ 

f: I VTGUTI~<= r = x IgV(x)l~dx, 

fo 
I w ~ c r T l , ~ , '  - Ix flgV(x)l~dx. 

If also (1.3) is in effect and r ~= R, then 

[(vT+ w~)cu~l,~_--, + ~ -'. 

PROOF. Let 4~, k = 1 ,2 , . . . ,  be any orthonormal basis for M r ( d A ) .  Then 

II VG#,~ III = 2~f:l(g4'~h ")V(x)12dx 

by Lemma 3.3 and so as (V'~,bkh ~')v is an orthonormal system of functions in 
L2[( -oo, T],dx) [see Lemma 3.1] and 

a lfl - 
gV(x y)(6~h 'y(y)dy 

you see that 
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as advertised. The second inequality is proved in much the same way, and the 

last is a simple consequence of the first two and the mutual orthogonality of V 

and W for T_->R. 

LEMMA 3.5. I/ g is a bounded/unction o/class L 2(R~, dT), and if (1.3) is in 
effect and S = T -  R = O, then 

PROOF. 

and 

belongs to 

IIV~GWTII ~<-- f~: [Y - 2 S ] l g ~ ( y ) p d y  

f 
- 2 5  

IIWTGVTIP<= _ ~  [lyl-2SllgV(y)pdy. 

I f / E L 2 ( R l ,  dA) ,and S = T - R > 0 ,  then 

h'~ W/ = (h ~[hr)qhrf 

e-'v2s (h ~lhR )H  e- C e-'V2SH2- 

s ince  hRIh~ is an inner function. Therefore 

(h~W/)V(y)=0 for y > - 2 S  

and the desired bound on VrGWT is easily achieved, much as in the proof of 
Lemma 3.4: 

II VGWfll~ = 2~,fo ~ I (gh'~- W/)V(x )12dx 

gV(x y)(h rW/)  (y)ay 

__- 27rff  dx f-)s Igv(x - y)pdy II(h ~WDvll~ 

f2~ ty - 2 S ] l g V ( y ) 1 2 d y  II wfll~ 

-< [Y -2SllgV(y)pdy II/IL 
S 

since W is a projection. This completes the proof of the first inequality. The 

second is proved in much the same way. 
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LEMMA 3.6. If  g is a bounded function of class L2(R ~, dy), and if (1.3) is in 
effect and T >= R, then 

[(Vr + Wr)G'Ur[2 <<- m II o II '-~ff + ~'1"~. 

PROOF. Let 

, , .  = I ( v +  w)o'ul~ 

for m = 1 ,2 , . . . .  Then, for m > 1, 

,~,. = I ( V +  W)G(U+ V+ W)G'-'UI~ 

---- I ( V +  W)GUI=IIG'-'UII+II(V + W)GIII(V + W)G'-'UI~ 

--< I I G I I ' - " ~  + IIG I1'~--,. 

since V + W and U are projections, and so, by a simple inductive argument, 

,~. _-< m II G I1"-',~1. 

But this completes the proof since 

al _-< [r + ~.,],,2, 

by Lemma 3.4. 

LEMMA 3.7. If g is a bounded function of class L2(R 1, dy), then 

f lyll(g')V(y)l~dy <= m:llGll=,--1,[z + ,I.P]. 

PROOF. Choose h = 1 so that dA = dy and M r ( d A ) =  l r (dA) .  Then, by a 

routine calculation, much as in the proof of Lemma 3.4, you find that 

f f  , r [ lYl -  2Tll(g')V(y)l~dy J~T [y - 2Tl l (g 'Y (y ) l ' dy  

= I WTG'UTI~+IV~G'UTI~ 

= I ( v ~ +  WT)G'U~I~ 

_-< m ~11 o 112'" "[~ + ~'1 

for every T > 0 .  The bound in the last line comes from Lemma 3.6. It is 

independent of T and so you have only to let T ~, 0 in the integrals to complete 

the  proof. 

Now fix an orthonormal basis ~k, k = 1, 2 , . . . ,  of Mr(dA)  for T -  R = S => 0 

and introduce the functions 
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and 

u,(x)= {~/~-~r(ho~k)'(x) for ]xl<-_-S 
for Ix[> S 

IV~Tr(ha~bkf(x) for x > S 
1) k (X)  = 

/ o for x <<- S. 

Because of Lemma 3.1 

THEOREM 3.1.  

then 

and 

uk + vk = V~--~t(h,~bkf(x). 

If f E L2(R ', dx), and if (1.3) is in effect and S = T - R >= O, 

l(f, u~>l ~ = f)~ If(x)l~dx 
k=l 

k~ l<f, vk>l~ L" Jf(x)(dx. 

NOTATIOn. <,>[11 II] denotes the standard inner product (norm) in L2; f 

denotes the usual Fourier transform for f in L2(R ', dx): t (Y)= f f ( x ) e " d x .  

PROOF. Let 

fo(x)={f(oX ) for Ix[<=S 
for Ixl>S. 

Then 

27r Z [(f,u~)r=2cr~ (/o, (V'-~h.~0~, )v )l 2 

= ~ l<fo, hRq',,>l ~ 

But now 

= Y.l<io/h., ~>~r 

= II u~(L/h~)ll~ 

= IIqo/h.)II~- PI w~(L/hR)ii~- Jl V.~o/h.)ll~. 
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II(fo/hR)ll~ = Ilfoll ~= 2zrf_ ~ 
S 

whereas, by Lemma 3.3, 

and 

If(x)ledx, 

II WT(fo/hR )Jl~ = 2 ~r f -_| l (foh /h. y (x )12dx 

f-~ = 27r Ifo(x + R)I2dx 

f++ - - 2 ~  Ifo(x)l=dx =0,  

Jl VT(~o/h~)ll~ = 2~r f f  I(~oh+/h.)+(x)12dx 

= 2~rff I(toh~/h.)+(x - R)12dx 

= 2~f~ I(~oh~/hR)V(x)12dx = 0; 

I f  f E L2(R ', dx) is bounded, and if (1.3) is in effect and 

~llQfe++a~ll2<-_2~ Ixllf+(x)12dx, 

and 

proved. 

COROLLARY 3.1. 

S = T - R  >--0, then 

the final evaluation depends upon the fact that hR/h ~ is an inner function. This 

completes the proof of the first assertion. The second is easier: 

If/ 2 I(I, ok>l 2-- ~ ICx)okCx)*dx 
k = l  k ~ l  

=~llX/~f j f (x)[(h .~ '~)+(x) l*dx ~ 

ff ff( )12 = < x dx, 

since the functions ~2--~(h,6~)v are orthonormal in L2(R 1, dx). The theorem is 
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PROOF. 

and 

f-2$ 
~ IIQfe"% I1~ ~ 27r IxllF(x)l~dx. k=l -~ 

The evaluations 

I[ qfe"Sf~k If: = 27r dx f f (x  - y)uk(y)dy 

,[qfe"SOk l[2= 27r f_~ s dx l f ;  f f (x  - y)v~(y)dy 12 

are made just as in the proof of Lemma 3.3. But now, by Theorem 3.1, 

t l q f e ' ~  tl ~ = 2re dx t f f (x  - y)[2dy 
k=l ~ S 

f/ fo = 27r dx [ff(x + y)[2dy 

<=2~ lxlty(x)l~dx 

and 

as advertised. 

II q f e ' %  112 < 2rr dx IfV(x - y)12dy 

= 2~'f_ 0 d x f - 2 S [ f v ( x ~ l  - y)[2d)~ 

_-<2~ ly IIF(y)l=dy, 

4. Principal conclusions for U G U  

In this section it will be shown that if (1.3) is in effect and T - R = S >-_ 0, then 

(UTGUT) ~ -  UTGnU~ 

is of trace class for every integer n >= 1 and, as T t ~, the trace of this operator 
tends to a limit which is independent of h providing that g is a bounded function of 

class LZ(R 1, d~,) and r + r '  < oo. The stated assumptions on h and g will be in 
force throughout this section. 
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The first step is to make use of the identity UT = I -- (VT + WT), which is valid 

for T => R, in order to express (UTGUT) "+1 as the sum of 2" terms of the form 

UTGLIGL2. .  " G L . G U r  

in which L,, i = 1,-- . ,  n, is equal to either the identity I or to the projection 

- (VT + WT). Each of these is of trace class and the trace of all but one of them 

stays bounded as T 1' ~: 

THEOREM 4.1. I f  L, is equal to either I or to - (VT + Wr), then 

UTGLIG " "  L .GUT 

is of trace class and 

I U T G L I G " "  L.GUT I1 <= n211G I1"-1[~ + ~-'1 

for every T >= R and every choice of L, providing that at least one of the L, is set 

equal to - (Vr + Wr). 

PROOF. Suppose for the sake of definiteness that exactly two of the L, are 

equal to - ( V +  W). Then 

U G L , G  . . .  L , G U  = U G ' ( V  + W ) G ' ( V  + W ) G ' U  

in which r, s, and t are positive integers which sum to n + 1. This exhibits the 

indicated operator as the product of two Hilbert-Schmidt operators (see Lemma 

3.6) and the bounded operator G' .  It is therefore of trace class. Moreover, 

I U G L , G . . .  L . G U  I1 <= I U G ' ( V  + W)1211 ~ II" I ( v  + w ) G ' u  I= 

_-< r II G I1-'11G II't II C7 II'-'b" + ~"1 

n=ll G II"- 'b " + ~-'1, 

by Lemma 3.6. It remains only to check that the same bound prevails for every 

permissible choice of the L,, i.e., whenever one or more of the L, is chosen equal 

to - ( V  + W). But that is easily done with above calculations as a guide. 

THEOREM 4.2. 

I trace{(UTGUT) n+l -- U T G  a+l UT}[  

n2ll G H"-1[r + r 

for n = 1 , 2 , " ' ,  and T>= R. 
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PROOF. You have only to decompose ( U G U )  "+1- UGn+IU into a sum of n 

distinct pieces of the form 

- U G h ( V +  W ) ( G U )  "+'-~ 

for k = 1,. �9 n, and to extract the asserted inequality from the bound 

I UG~( v + W ) ( G U )  "+'-~ l, <=1 UGh( V + W)I~[ ( V  + W ) O U  I~ll G II ~ 

--< k IIGII"-'! U G ( V  + W)121(V + W)GUI~, 

much as in the proof of Theorem 4.1. 

THEOREM 4.3. I f  ao, a , ' '  ", a ,  are positive integers which sum to n + 1: 

ao+ a~ + ' . . +  am = n + l ,  

then 

UrG oo WrG "' WrG o~ . . . W r G "  [Jr 

is of trace class for T >= R and the limit points of 

trace{ U-rG ~o W r G " "  " " WrG " Ur}, 

as T '~ 0% are independent of h. 

PROOF. The factorization 

UG"oWG ",... WG"-U = (UG"oW)(G ",... WG"--')(WG~ 

exhibits the indicated operators as the product of two Hilbert-Schmidt operators 

(see Lemma 3.6) and a bounded operator.  It is therefore of trace class. Now let 

$~, k = 1, 2 , - - . ,  be the orthonormal basis for M r ( d A )  which was fixed for the 

proof of Theorem 3.1. Then 

2~r(WG~,WG ~ . . .  WG~-~bk, G*~ 

= 27r(qG",qG'~ . . .  qG<'~e','rh~bk, G*~oe'~'rhOk) 

= (gig s ' . . .  clG"-e"S(ak + :J~), G*%e"S(~  + t3~)), 

and a tedious but elementary calculation based upon the isometry exhibited in 

Theorem 3.1 shows that 

2 (qG~,. �9 �9 cIG~-e"S~k, G*~oe',S~) 
k = l  

= 27r 2 (qG""  �9 �9 qG"'e~'Sok, G*~~ 
k = l  
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for any orthonormal basis Ok, k = 1 , 2 , . . . , o f  lS(d~,)= MS(d 'y ) .  Therefore it 

remains but to show that the contribution of the terms involving t3k becomes 

negligible as T 1' oo. Thus, for example, 

I(cl (5 ~ . . .  q (5"-e"St~k, (5 *~~ >l 

__< llqG~,.., q Go--,II ~ llqG~'e"~O~ llll QG*"~ II 
k = l  

<=IIGII,,, . . . . . .  ._, llqG",,e',SOkIl2~__~ ll,O*~oe"~0,11 ~ " 2  

1=1 

--<Iioli"' ...... --,2rr Ix l l (g'-y(x) l~dx Ixll(g*"~ 

= o 0 ) ,  

as T 1' ~; the bounds in the last two lines are taken from Corollary 3.1 and 

Lemma 3.7. A similar estimate shows that 

I<qG"' �9 �9 �9 q G"-e"SOk, G*~~ + tik)>l = o(1), 
k = l  

as T 1' oo, to complete the proof. 

Much the same sort of argument serves to prove 

THEOaEM 4.4. I /do,  Oil, �9 " ", am are positive integers which sum to n + 1, then 

UrG~oVrG* ,VrG"=. . .  V r G ~  

is o f  trace class for T >= R and  the limit points o f  

trace{ U r G  ~o V r G * "  " VrG  ~- Ur }, 

as T "t 0% are independent  o f  h. 

AMPLIFICATION. An elementary calculation shows that if h"(31) = h ( -  7) and 

g is even and if ~b~, k = 1, 2 , . . . ,  is an orthonormal basis for Mr ( d A)  which is 

chosen so that each term is either even or odd, then 

( V~G ~ V~G ~ . . .  V~-Ga-4~, G*~~ 

= < WTG a' W r G " = . "  W~Ga-~bk, G *"~ 

(The fundamental fact here, as the referee has kindly pointed out, is that the 

mapping f(y)--* f(  - 3/) gives a unitary equivalence between 

P G * o V G  ~, . . �9 V G ~  and PGO~WG ~ .  . �9 W G * - P . )  Therefore the traces of the 
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corresponding operators, which are independent of the choice of basis, must 

match: 

trace UTG%VTG "'. . . VTG"'UT = trace UrG~~ ~' ' '"  WrG~ 

This gives an independent proof of Theorem 4.4 in the special case that 

h" (T)  = h ( -  T) and g is even. 

The main theorem for UGU is now at hand: 

THEOaEM 4.5. If g is a bounded uniformly continuous function of class 

L2(R ' ,dT) ,  if r + r ' < o o  and if (1.3) is in effect, then 

( UTGUT )" - UTG"UT 

is of trace class for every integer n >= 1 and all T >= R and 

"-' [o ~ / ~ - ~  ( -~Z-~v(  - x)dx l i m t r a c e I ( U r G U r ) ' - U r G ' U r l = - n Z  X ~ k  ) (X)\n-k: 
T ~  k f ,  

independently of h. 

Paoov. Theorem 4.2 insures that (UrGUT) n - UTGnUT is Of trace class for 

n = 1, 2,.  �9 and T => R. The rest of the proof is perhaps best understood by 

focusing on the  case n = 3. To begin with 

(UGU)  3-  UGSU = U G U G U G U -  UG~U 

= - U G ( V +  W ) G 2 U  - UG2(V+ W ) G U  

+ uG(v+ W)G(V + W)GU, 

for T=> R. But as 

I UGWGVGUI, ~ I UGWI21 WGV~UI= 

----II WOVlII UOWI~I VOUI: = o(1) 

as T 1' o% in view of Lemmas 3.4 and 3.5, and (by the same argument) 

[UGVGWGUI, = o(1) 

as T t o% you see that 

trace{(UGU) 3 -  UG3U} = t r a c e ( -  U G ( V  + W ) G 2 U  

- UG2(V + W ) G U  + U G V G V G U  + U G W G W G U }  + o(1), 
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as T 1' o0. Theorems 4.3 and 4.4 now permit you to conclude that the limit points 

of 

trace{(UrGUr) 3 -- U r G  3 Ur}  

as T 1' ~ are independent of h. They may therefore be evaluated by choosing 

h = 1. In that case Ur = Pr for all T >= O, U-rG3Ur is of trace class (as will follow 

from Lemma 5.1) and, by (1.6), 

trace UrG3Ur = trace PrG3Pr 

= 2 T ( g , ) ~ ( 0 )  = T [g (3,)]3d3,. 
71" J 

Moreover, by another application of (1.6), 

trace{(UrGUr) 3 -  UrG3Ur} = trace{(PrGPr) ~-  PTG'PT} 

= g~(x, - x=)g~(x~- x , )g~(x3-  Xl)dx,dx=dx,--g [g(3')l'd3' 

and, as T ~' % this tends to the limit indicated in the statement of the theorem, 

as follows from the refined version of Kac's formula; see, e.g., theorem 5.7 of 

Devinatz [7]. This completes the proof for the case n = 3 since the existence of a 

limit is equivalent to there being only one limit point. Much the same sort of 

argument works for general n. 

AMPLIFICATION. To extract the trace formula in the special case h = 1 from 

theorem 5.7 of Devinatz you should identify the function k [/~] in Devinatz with 

eg leg v] and check first that if e is small enough and if say g and g V are 

summable and r + r '  < % then both the permanent assumption (4.5) of Devinatz 

and the hypotheses of his theorem 5.7 are met. The requisite formulas for such 

functions g then follow by matching powers of e. Now if g is only subject to the 

hypotheses of our Theorem 4.5, then 

l f 7 0  2--0 g(7 + n)drl 

go(3') = 1 + 027 = 

I �9 sin Ox 
e ,~Xg V(x ) ~ dx 

l + 023' 2 

in addition to meeting the same hypotheses, is also summable for every O > 0 as 

is 

g; ( x )  = ~ gV(x - y)(20)-~exp( - [y [ 0-')dy. 
J 
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Therefore 

lim trace{(PrGoPr) ~ - PrG ;Pr} = K. (go) 
T ~  

in which r . (g )  designates the limit claimed in the statement of the Theorem and 

PT is the projection onto lr(dy) .  The same results are then obtained for g by 

letting 0 ,I, 0. We shall sketch the proof for n = 3. To justify passing from Go to 

G on the left it is enough to show that 

and 

[ PG ( V + W) GPGP - PG8 ( V + W) GoPGoP [, = o (1) 

IPGZ(V + W ) G P -  PG2o(V + W)GoP[~ = o(1) 

uniformly in T as 0 ~, 0, since 

( P G P )  3 -  PG3P = - PG (V  + W)GPGP - PG2(V + W)GP. 

But the second of these is equal to 

I P ( G : -  GI)(V + W)GP + PG~(V + W)(G - Oo)PIl 

<-_ I F ( G : - G ~ ) ( V +  W)[~[(V+ W ) G P [ : +  I P G i ( Y +  W ) [ : I ( V +  W) 

• ( o  - G . ) P I :  

which tends to 0 uniformly in T as 19 $ 0 in view of Lemma 3.4 and the fact that 

(i) II g k _ g ~0 I[o ~ 0 

and 

(ii) f l x[[ (g  ~ -g~)V(x)12dx ~ O  

for k = 1, 2 , . . . ,  as 0 ~, 0. The first is disposed of in much the same way. The 

justification of (i) depends upon the fact that liml~f~ l g( ' /) l  = 0; see page 115 of 

Devinatz [7] for details on the latter. The justification of (ii) is tedious but 

straightforward (with the help of (i)). It now remains only to check that 

lim K.(go)= K.(g) o,o 

but that is an immediate consequence of (ii). 

5. Pr inc ipal  conc lus ions  for PGP 

The present objective is to study the trace of PrGPT. Recall that if I h 1-2 is 

locally summable, then, by Theorem 2.1, l r ( d A ) =  MT(dA) for every T > 0. 
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Consequently the results derived in Section 4 for Ur become applicable to Pr 

also and can in fact be put into a more concrete form since the trace of PrGPr 
may be expressed explicitly in terms of J~(y) :  

LEMMA 5.1. If T >- O, and if 

f lg(3,)lJ~(3,)dA(v)< ~, 

then the operator (PrGPr)" is o[ trace class [or n = 1, 2 , . . . ,  and 

trace PrGPr = 17r f g(~')J~(v)dA(3'). 

PROOF. Fix T => 0, choose an orthonormal basis ~b., k = 1 ,2 , . . . ,  of l r ( d A )  

and let G ~ denote multiplication by I g I. Then, in view of identity (2.4), 

k ~ l  k = l  

= f Ig(3')lJ~(3')dA(3')" 

But now as PrG~ is non-negative and the sum is finite by assumption it follows 

that PrG~ is of trace class. Much the same sort of argument implies that 

PT(G ~  GR)Pr and Pr(G ~  G,)Pr are of trace class, where GR[GI] stands for 

multiplication by the real [imaginary] part of g. Hence 

PrGPr = PrG~ - Pr[G ~  GR]Pr + i{PrG~ - PT[G ~  GI]Pr} 

and (PrGPr)", n = 2, 3 , . . . ,  are of trace class since that class is closed under 

addition and under multiplication by bounded operators. Moreover, another 

application of (2.4) yields the formula 

trace PrGPr = k-, ~ (G4~, 4~)~ = f g(~/)Jr~(7)dA('Y), 

and the proof is complete. 

AMPLIFICATION. 

for 0_-<L _-< T. 

THEOREM 5.1. 

If PrGPr is of trace class, then so is 

PL GPL = eL ( PTGPT )PL 

If (1.3) is in effect and l h 1-2 is locally summable, if 

f oo 
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for every T>= O, if g is a bounded uniformly continuous function of class 
L2(R ', d r )  and if 

[~+~'1<~, 

then (PrGPr) ~, n = 1, 2, . . . ,  is of trace class for T >= 0 and 

lim {trace(PrGPr)"- f [g(y)]"J~(~,)da(y)} 

= -n2,_1 xlk ) (-x)dx 

independently of the choice of h, within the permissible class. 

PROOF. Since PT = UT for T => 0, by Theorem 2.1, you have only to combine 

the implications of Theorem 4.5 and Lemma 5.1. 

THEOREM 5.2. If g enjoys the properties attributed to it in Theorem 5,1 and if 
l e [ is sufficiently small, then 

e"(PrGPr)" 
n=l  n 

is of trace class for T >= R and the determinant 

d e t ( I - e P r G P r ) = e x p { - t r a c e ~  1 e"(PrnGPr)" } 

=exp {f log[l- eg(~,)]1~(r)da(r) 

.to f| x(log[1 - eg])~(x)(log[1 - eg])V( - x)dx + o(1)}, + 

a s T ~ w .  

PROOF. Let 

a,(T) = trace{(PrGPr)" - PrG"Pr}. 

Then, by Theorem 4.2, you know that 

I ot,(T)l _-< (n - 1)211G 11"-2[~ " + z'] 

for every T -  R. Therefore, by dominated convergence, 

- t i m  ~1- e"a,(T)=n - .-1 ~ rr| e"a,(T)n 
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for l e l <  (11G 11)-'. But this is the same as to say that 

log d e t ( I -  ePTGPT)- f l og [1 -  eg(v)]J (r)da(v) 

fo -- x(log[1 - eg])V(x)(log[1 - egl)V( - x)dx + o(1), 

as T 1' ~, as advertised. 

It is worth emphasizing that under (1.2) both the conditions and conclusions of 

Theorems 5.1 and 5.2 can be expressed more concretely in terms of the phase O 

of h: 

COROLLARY 5.1. I f  (1.2) is in effect, then you may set 

1 IT + tg '(y)]dy J ~ ( y ) d A ( y )  = ; 

/or T >-R in both the hypotheses and conclusions of Theorems 5.1 and 5.2. 

Moreover, I h 1-2 is locally summable and (1.3) is fulfilled. 

PROOF. You have only to invoke Corollary 2.2 and Lemma 2.1. 

AMPLIFICATION. The conclusions of Theorem 5.2 can be reformulated in a 

more classical vein since PrGPr can be expressed as an integral operator Kr 

with kernel 

KT((;, rl) = f J~(y)g(y)J'~(rl)dA(~l) 

for real ~ and r/, and the definition given for the determinant of I -  ePTGPr 
coincides with the classical Fredholm determinant of ! -  eKT. It can also be 

expressed in terms of the eigenvalues Aj(T), j = 1, 2 , . . .  of PTGPT: 

d e t ( I -  ePrGPr)= 1-I [ 1 -  eA,(T)]. 
1>1 

If PTGPT has no eigenvalues, as is conceivably the case if G ~  G*, then the 

product is just taken equal to 1. Gohberg-Krein  [10] is suggested for additional 

information on such matters. 
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